

Managing for Soil Health

Collaborators: Jeana Myers, Janel Ohletz

Local Food Program

Small Farm Bootcamp Information

Module Content Developed By: Angel Cruz, Hannah Bundy, Jeana Myers, and Janel Ohletz

Module Content Reviewed By: William Landis, Paul MacKenzie

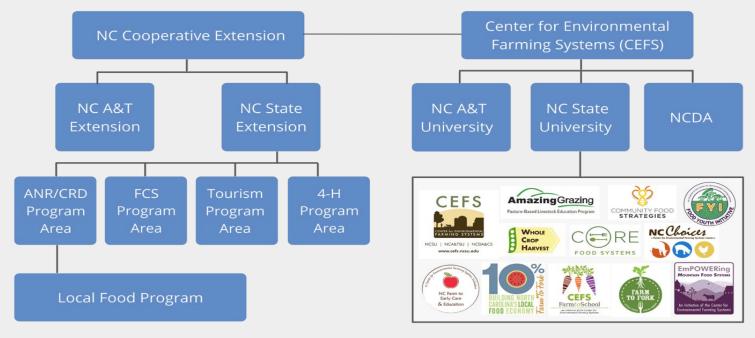
Small Farm Bootcamp is an eight module program helping small-scale farmers gain knowledge in production on their land. This curriculum was developed by the Growing Farm Capacity Work Group of the North Carolina Cooperative Extension Local Food Program Team. This program was developed and piloted in 2021.

Learning Objectives

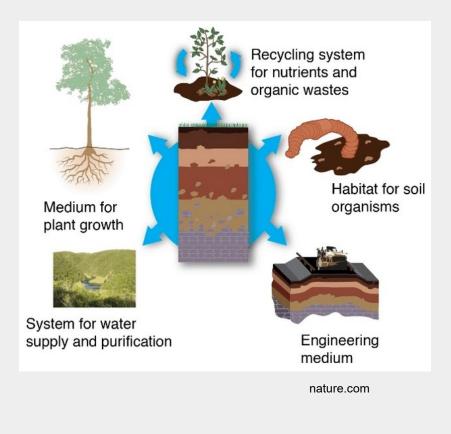
- 1. Understand how to soil test and interpret the report.
- 2. Describe the basic soil characteristics and find soil type using Web Soil Survey.
- 3. Determine fertilizer needs based on soil results and management goals (organic vs. conventional).
- 4. Explain the role of soil macronutrients and pH in plant health and development.
- 5. State the importance and role organic matter.
- 6. Identify organic matter sources and describe practices for building organic matter.

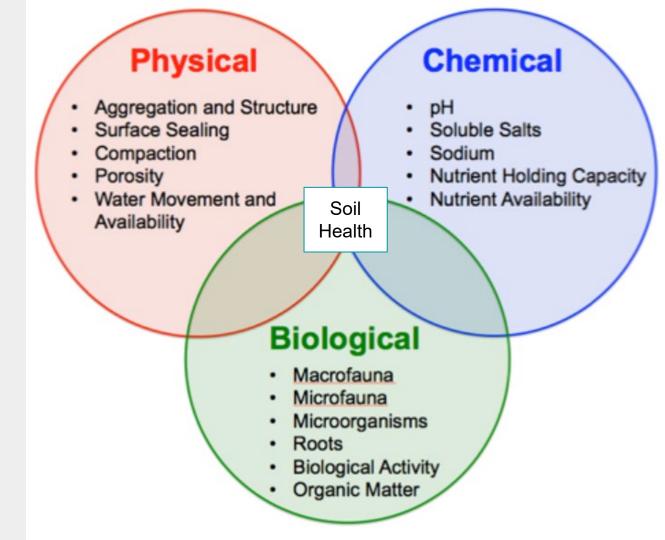
Introduction to North Carolina Cooperative Extension

We Grow North Carolina through Education and Research



Extension Organization

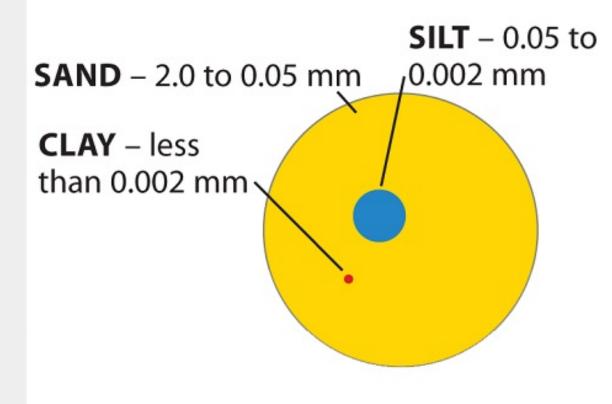

Importance of Soil Health


What soil provides Medium for Life!

Soil provides many resources

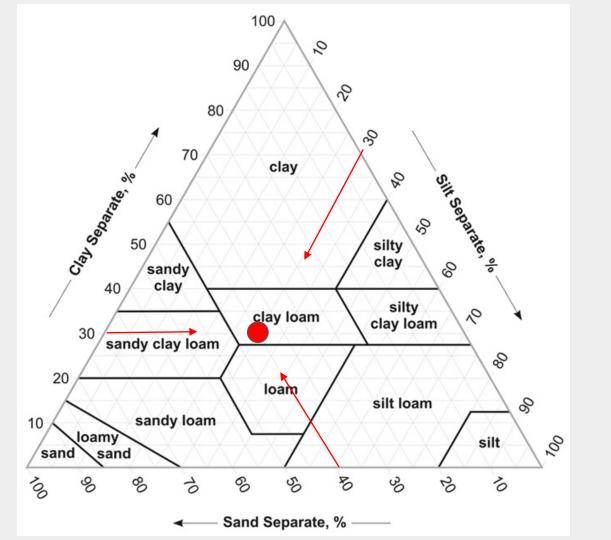
- Food
- Timber
- Fiber
- Fuel
- Ecosystem support

Soil Properties



Getting to know your soils

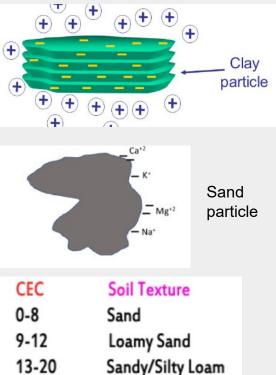
Texture and Structure


Soil Texture - How much sand, silt, clay

SIZE of soil particles can be <u>very</u> different!

Texture Triangle -How much

sand, silt, clay



But, it's more than SIZE of soil particles that influences soil qualities.... $\underbrace{}^{\textcircled{}} \underbrace{}^{\textcircled{}} \underbrace{}^{\end{array}{} \underbrace{}^{\vdots} \underbrace{}^{$

Clay has a platy structure, with many more electrically charged sites to hold onto nutrients and water.

Sand is more like solid, tiny rocks, with fewer electrically charged sites to hold nutrients and water.

Cation Exchange Capacity (CEC) is the amount of cations (like K, Ca, Mg, etc) that a soil can hold onto. Clay, and organic matter, have high CEC's. Sand has a low CEC.

Loam

Clay

Clay Loam

21-28

29-40

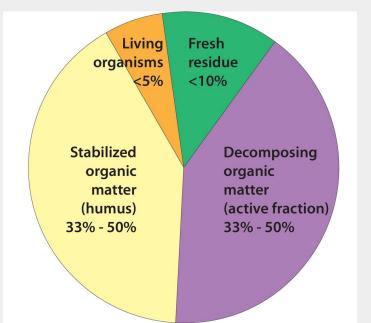
>40

Texture Impacts Management

- Nutrient holding higher in clay vs sand
- CEC higher in clay soils or organic matter
- Water infiltration slower in clay soils
- Water holding higher in clay soil and organic matter

Texture - Can't be changed!

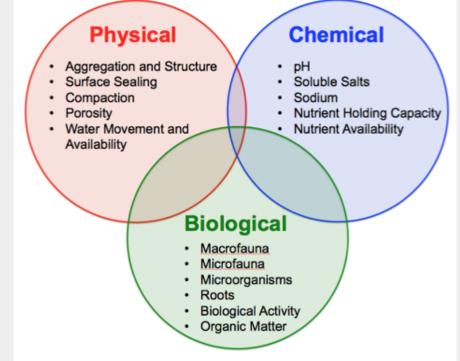
You have just so much sand, silt and clay in your soil...


How to improve?

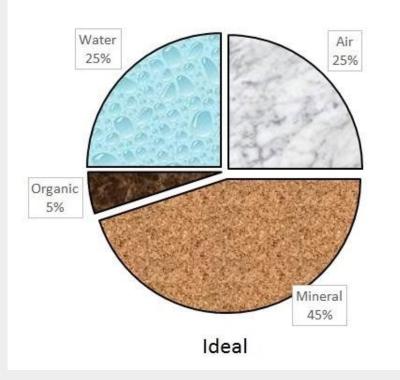
STRUCTURE *with Organic Matter*

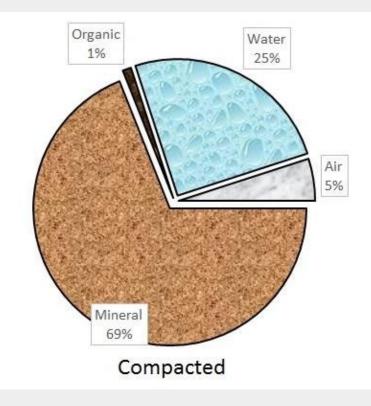
What is Organic Matter?

Organic matter in the soil is


- living organisms
- fresh (newly dead) materials
- decomposing matter
- fully decomposed materials

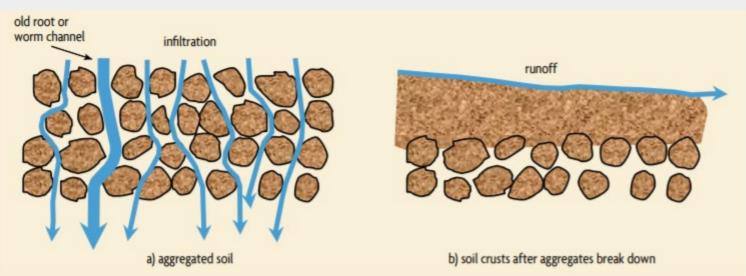
NRCS


Organic matter!

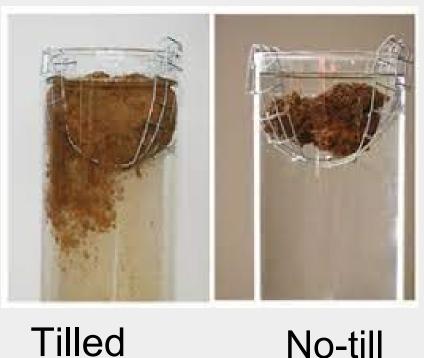

Improves physical, biological, chemical nature of soil –

holds nutrients, improves moisture management and air availability, supports microbial populations.

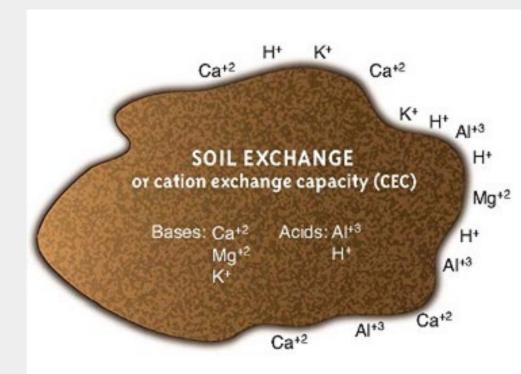
Soil Structure - air is important



Soil Structure


Particles of soil are grouped together into aggregates - cemented or bound together by organic matter residues... "Tilth"

Soil Structure - Aggregates

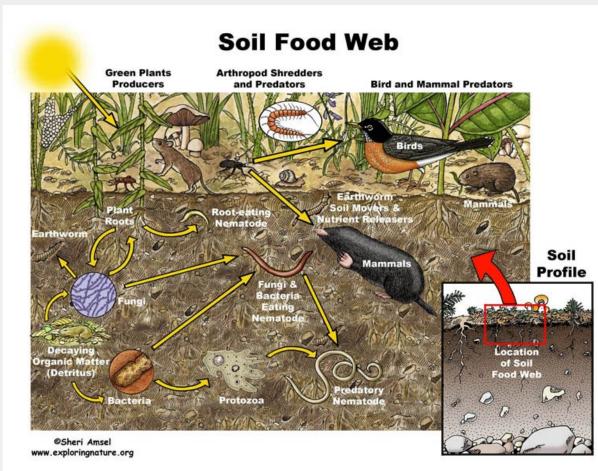

- Soil stability
- **Microbial community**
- Erosion potential

Which soil was tilled?

Chemical

- pH = measure of acidity
- CEC = cation exchange capacity
- Controls nutrient availability
- and ability to hold nutrients

Biological


Organic matter

Microbial community

Roots

Macrofauna (animals)

Macroflora (plants)

Getting to know your soil

Soil Survey

- Soils Home
- National Cooperative Soil Survey (NCSS)

Archived Soil Surveys

Ctature Man

Welcome to Web Soil Survey (WSS)

Web Soil Survey (WSS) provides soil data and information produced by the National Cooperative Soil Survey. It is operated by the USDA Natural Resources Conservation Service

(NRCS) and provides access to the largest natural

- Requirements
- Know Web Soil
 Survey operation hours
- Find what areas of the U.S. have soil data
- Find information by topic

Map Unit Legend

99/2/99

680440

680380

Map Unit Symbol	Map Unit Name
Aa	Altavista fine sandy loam, 0 to 3 percent slopes, occasionally flooded
ApB	Appling sandy loam, 2 to 6 percent slopes
ApC	Appling sandy loam, 6 to 10 percent slopes
Ch	Chewacia loam, 0 to 2 percent slopes, frequently flooded
EnC	Enon loam, 6 to 12 percent slopes
WsB	White Store loam, 2 to 6 percent slopes
Totals for Area of Interest	

Soil Testing

Why, How, Understanding Results

Why Soil Test?

To improve plant growth To protect the environment

Best time to sample?

April through November- Free

December through March- \$4 (Peak)

AFTER adding compost

BEFORE adding lime & fertilizer!

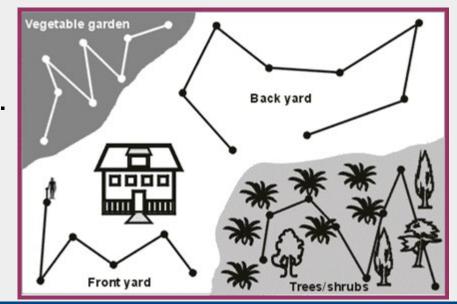
How often?

- Test annually for 2-3 years, then only every 2-3 years
- Keep map of soil test locations to track changes
- Keep sample ID consistent

Taking Representative Samples

Sample by management area

Depth: Established areas: 4 in.


Tilled areas: 6 to 8 in.

Take 15-20 cores

the box to red line

Mix soil up well

NO TAPE! NO BAGS!

Mix all samples

Fill the box

Label the box

Form AD-1 (2020)

FARM ID (optional)

SAMPLE METHOD

Management Zone

GPS Grid

ROUTINE / PREDICTIVE SAMPLES

SOIL SAMPLE SUBMISSION FORM - NC Soil Only

April ~ Thanksgiving: NO FEE December-March: \$4.00 / sample Check online for exact dates

SAMPLE INFORMATION PAYMENT

NCDA&CS Agronomic Division Soil Testing Section Mailing Address: 1040 Mail Service Center, Raleigh NC 27699-1040 Physical Address (UPS/FedEx/DHS): 4300 Reedy Creek Rd, Raleigh NC 27607 Phone: (919) 733-2655 For lab results go to: www.ncagr.gov/agronomi/pals

GROWER INFORMATION (please print legibly)

AGENT OR ADVISOR LAST NAME FIRST NAME ADDRESS

LAST NAME FIRST NAME FEE TOTAL \$ AMT PAID \$ SAMPLING DATE (optional) ADDRESS METHOD OF PAYMENT: CASH / CHECK Grower
 Advisor / Consultant CITY STATE ZIP CITY STATE ZIP ۲ ESCROW ACCOUNT: EMAIL ADDRESS (REQUIRED) EMAIL ADDRESS COUNTY (WHERE COLLECTED) (provide Account Name or Number) PHONE PALS # (If known) PHONE PALS # (If known) NUMBER OF SAMPLES "Reports will appear as "Pay Now" until Payment is applied" By submitting this form to the NCDA&CS Agronomic Division. I attest that the accompanying samples were collected in North Carolina.

Samples cannot be received without necessary paperwork. Use NCDA&CS sample boxes only. Bags from other labs are not accepted.

LAB NUMBER (LEAVE BLANK)	SAMPLE ID required				PPLIED W 12 MON Month	THS	FIRST CROP	CROP CODE (see side 2)	SECOND CROP	CROP CODE (see side 2)	
1											
2											
3											
4											
5											
6											
7											

Form AD-15 (September, 2016)

LAWN AND GARDEN SOIL SAMPLE INFORMATION- NC SOIL ONLY

ROUTINE / PREDICTIVE SAMPLES

April ~ Thanksgiving: NO FEE December – March: \$4 / sample Check online for exact dates NCDA&CS Agronomic Division Soil Testing Section Mailing Address: 1040 Mail Service Ctr. Raleigh, NC 27699-1040 Physical Address (UPS/FedEx): 4300 Reedy Creek Rd. Raleigh, NC 27607 Phone: (919) 733-2655 Website: www:ncagr.gov/agronomi

For laboratory results, go to www:ncagr.gov/agronomi/pals

SAMPLE INFORMATION	PAYMENT	CLIENT INFORMATION (PI	EASE PRINT LEGIBLY)	OTHER RECIPIENT/	SERVICE PROVIDER
SAMPLE DATE	FEE TOTAL	LAST NAME FIRS	T NAME	LAST NAME	FIRST NAME
	Check preferred- payable	4000500		ADDRESS	
NC COUNTY (WHERE COLLECTED)*	to NCDA&CS	ADDRESS		ADDRESS	
	Please NO CASH				
	Reminders	CITY S	TATE ZIP	CITY	STATE ZIP
	Use NCDA&CS sample boxes only. Fill box with soil				
NUMBER OF SAMPLES	to red line. Bags of any type not accepted.	E-MAIL ADDRESS (needed	for report notification)	E-MAIL ADDRESS	
	Acquire boxes at our lab or NC Cooperative Extension office.	PHONE (best contact number)	PALS # (if known)	PHONE	PALS # (if known)

*By submitting this form to the NCDA&CS Agronomic Division, I attest that the accompanying samples were collected in North Carolina.

LAB NUMBER (LEAVE BLANK - LAB USE ONLY)	(maxim	IDEN	IR SAM ITIFICA	TION	as box)	IE APPLIED V AST 12 MON Month	LAWN / GARDEN PLANTING CODE (Please see page 2)		Quick Tips
								•	Please use only the planting codes on page 2. A bag of lime weighs 40 lb. If lime was applied over one year ago, leave the lime information blank. <u>Please make sure your</u> email address is
									correct and legible. You will be notified when the report is complete by email.

Choosing Crop Codes

Crop Codes for Commercial Production

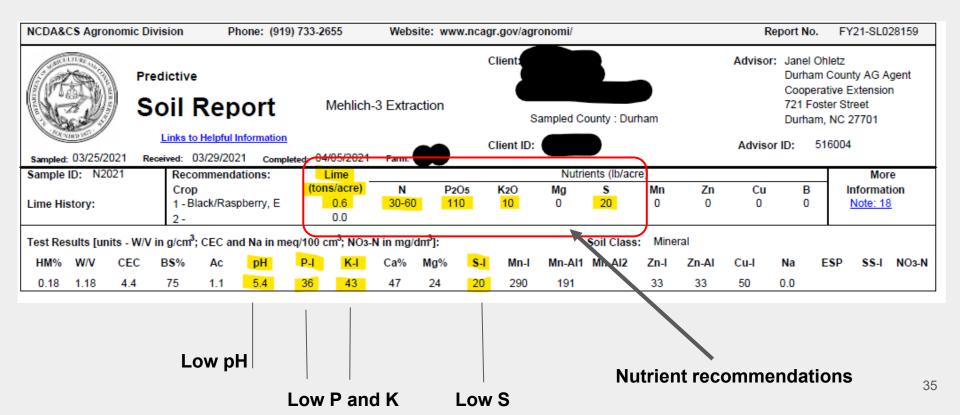
Homeowner Form (http://www.ncagr.gov/agronomi/documents/FormAD-15 corrected logo.pdf)

	Specialty Crops		Commercia	al Horticultural Cro	ns		_
Abbreviations	101 Canola / Rape		connerue	in nor dealtural crop	2 3		
E = establishment (1 st year)	301 Clary Sage	070 Asparagus, E	088 Gra	pe, E	103 Black/Raspb	erry, M	
M= Maintenance	310 Hemp	071 Asparagus, M	089 Grape, M		107 Squash/Pum	ipkin	
SG = small grain	119 Hops	072 Beans/Peas	175 Grag	oe, Vinifera	108 Strawberry,	E	Orchard, Fruit
	017 Kenaf	073 Beans, Pole	090 Kale	/Mustard/Spinach	109 Strawberry,	M	& Nut
Field Crops	311 Truffles	074 Beet	093 Okra	3	118 Strawberry,	plastic	130 Apple, E
001 Corn, grain		075 Blueberry, E	095 Pea,	Southern	110 Tomato		131 Apple, M
002 Corn, silage	Forage and Pasture	076 Blueberry, M	096 Pep	per	111 Tomato, gre	enhouse	138 Peach, E
003 Cotton	040 Alfalfa, E	077 Brocc/BSprouts/Caul	097 Plan	t bed, vegetables	115 Turnip		139 Peach, M 140 Pecan, E
004 Small Grain (SG)	041 Alfalfa, M	079 Cabbage	098 Pota	ito, Irish	116 Vegetables,	other	140 Pecan, E 141 Pecan, M
005 Millet, pearl	042 Common Bermuda /Bahia	080 Cantalope/Melons	099 Swe	etpotato			141 Fecali, M
006 Grain Sorghum	043 Bermuda hay/pasture , E	084 Corn, Sweet	100 Rad	ish			
007 Peanut	044 Bermuda, hay/ pasture M	085 Cucumber	102 Blac	k/Raspberry, E			
008 Rice	047 Bluegrass						
009 Sorghum, syrup	048 Bluegrass/White Clover						
010 Soybean	049 Clover/Grass, E	Commercial Turf	8	Commercial Nursery			Forestry
011 Sunflower	050 Clover/Grass, M	Sod Production	od Production		owers		Hardwood, E Harwood, M
012 Tobacco, burley	051 Gamagrass	150 Fairway/Athletic Field	t I	120 Dahlia			Pine, nurserv
013 Tobacco, flue-cured	053 Legumes, various	151 Tee		121 Gladiolus			Pine, E
015 SG silage / Soybean	054 Fescue/Orch/Timothy, E	152 Greens		123 Gypsophila	(baby's breath)		Pine, M
016 SG silage / Corn silage	055 Fescue/Orch/Timothy, M	153 Centipedegrass		124 Flowers, bu	ulbs		Hardwood, seed
018 SG/Soybean (double crop)	056 Prairiegrass	154 Hybrid Bermudagrass		125 Flower, roo	ots	145	Fir/Spruce, seed
	057 Switchgrass	155 St. Augustinegrass		126 Container,	nursery	146	Pine, seed
Christmas Trees	059 Sudan/Sorghum pasture	156 Tall Fescue		132 Rhod/Gins	eng/Natives		
034 Leyland Cypress	060 Sudan/Sorghum silage	157 Zoysiagrass		136 Tree nurse	ry	W	ildlife Food Plots
035 Line-out/Seed beds							er/Turkey
036 Fir/N.Spruce/Hem, E	Roadside Areas		_				land Game
037 Fir/N.Spruce/Hem, M	061 Critical area	Stormwater					aterfowl
038 White/VA Pine	062 Grass, E	200 Bioretention ce	0			069 Fis	
039 Blue Spruce/Red Cedar	063 Grass, M	L				000 115	

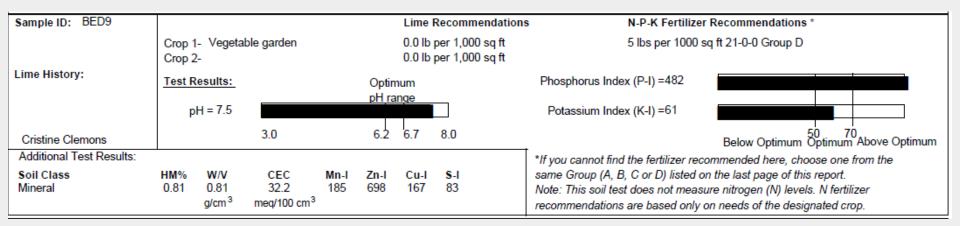
Lawn and Garden Planting Codes

Farmer options

Homeowner options


020 Azalea / Camelia	025 Mtn. Laurel / Rhododendron	030 Berries / Fruits / Nuts (except blueberries)
022 Lawn, Centipede	026 Lawn (not centipede)	031 Landscape Tree (deciduous and evergreen)
023 Flower Garden	028 Rose	032 Blueberries
024 Vegetable Garden	029 Shrubs	

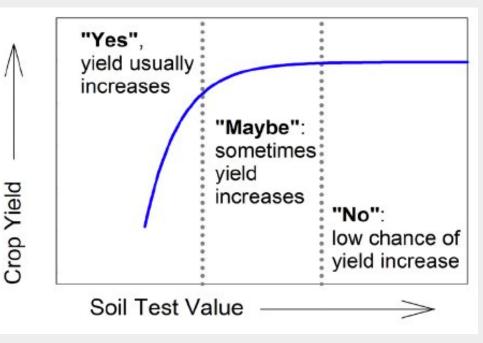
Homeowner versus Farmer Report


Sample ID: Veg1B			Lime Recommendations	<u>N-P-K Fertilizer Recommendations *</u>						
	Crop 1- Vegetable g Crop 2-	garden	130.0 lb per 1,000 sq ft 0.0 lb per 1,000 sq ft	7 lbs per 1,000 sq ft 15-0-14 Group C						
Lime History:	Test Results:		imum	Phosphorus Index (P-I) =164						
	pH = 5.8	pH r	ange	Potassium Index (K-I) =38						
Jeana Myers	3.	3.0 6.2	6.7 8.0	E	50 70 Below Optimum Optimum Above Optimum					
Additional Test Results:				*If you cannot find the fertilizer recomm	nended here, choose one from the					
Soil Class Mineral		CEC Mn-I Zn-I 19.4 249 927		same Group (A, B, C or D) listed on the						
minoral		eq/100 cm ³		Note: This soil test does not measure nitrogen (N) levels. N fertilizer recommendations are based only on needs of the designated crop.						

Sample I	ID: BC	2	Reco	ommend	ations:	Li	me	Nutrients (lb/acre)										More		
	Crop		(tons/acre)		N	P2	O 5	K2O	Mg	S	Mn	Zn	Cu	В	1	nformat	ion			
Lime His	story:		1 - C	orn, silag	je		0.0	180-22	8 0	0	100	0	20	0	0	0	0		Note: 3	
			2 -			0.0														
Test Results [units - W/V in g/cm ³ ; CEC and Na in meq/100 cm ³ ; NO3-N in mg/dm ³]: Soil Class: Mineral																				
HM%	W/V	CEC	BS%	Ac	pН	P-I	K-I	Ca%	Mg%	S-I	Mn-I	Mn-Al1	Mn-Al2	Zn-l	Zn-Al	Cu-l	Na	ESP	SS-I	NO3-N
0.46	1.01	7.0	83	1.2	6.1	31	46	58	21	19	109	81		700	700	52	0.0			

Farmer Report

Homeowner Report



High pH Super high phosphorus Very high zinc levels

Likely due to compost additions

Nutrient Index

- Ranges 0-100
- Nutrient needed ~ 0-40
- Maybe needed ~ 40-60
- Not needed >75

[©] Oregon State University. Prepared by Dan M. Sullivan.

Mixed Fertilizer Options on the Back

Table 1. Groups of equivalent fertilizers that supply 1 lb of N per 1,000 sq ft *

Group A: low P-I + low K-I		Group B: low P-I + high K-I		Group C: high P-I + low K-I		Group D: N only
5-10-10	@ 20 lb	5-10-5	@ 20 lb	8-0-24	@ 12 lb	15-0-0 @ 7 lb
3-9-9	@ 30 lb	18-46-0	@ 6 lb	15-0-14	@ 7 lb	21-0-0 @ 5 lb
10-10-10	@ 10 lb	18-24-10	@ 6 lb	6-6-18	@ 18 lb	16-0-0 @ 6 lb
11-15-11	@ 10 lb	9-13-7	@ 11 lb	5-5-15	@ 20 lb	28-0-4 @ 4 lb
8-10-8	@ 12 lb	9-17-8	@ 11 lb	10-0-14	@ 10 lb	12-6-6 @ 8 lb

* Since these rates supply 1 lb N per 1,000 sq ft, use half the rate if centipede is the grass type.

Using your Soil Test Results

Lime and Nutrients

Adjusting pH

East coast naturally has acidic soils

• Lime to raise pH

Did you over do it, pH too high?

• Need to lower, use elemental sulfur.

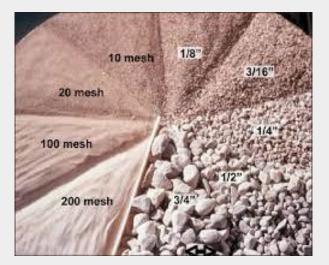
Both take a while to work ~ 6 months

Lime

Calcitic Lime:calcium carbonate

Dolomitic Lime:calcium carbonate and magnesium

Powdered vs. Pelleted



Limestone - size matters

Very slow reacting ("stone") Not soluble

Stays near surface of soil

Best mixed in if possible!!!

researchgate.net/nationalstoneassociation

Let's Practice

This exercise will help you to better understand what your results are and how to address them for your soil.

- 1. What is the pH?
- 2. What is the level of phosphorus and potassium?
- 3. Is there a lime recommendation given?
- 4. How much do you need to apply to your field.

Basics of Nutrients

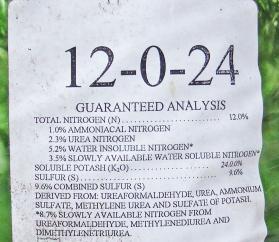
- Macro & micronutrients
- Plant tissue vs. soil levels
- Types of fertilizer (what, why, and how)
- Organic vs. manufactured

Essential plant nutrients

<u>Macronutrients</u>: nitrogen, phosphorus, potassium, calcium, magnesium, sulfur

<u>Micronutrients</u>: manganese, zinc, iron, copper, boron, molybdenum, selenium, chlorine, silicon, sodium

Fertilizers have different formulations - different content



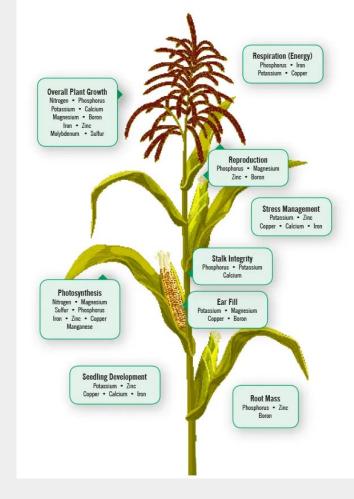
GARDEN FOOD 5-10-5

RECOMMENDED FOR FLOWERS, SHRUBS, VEGETABLES AND ORNAMENTALS

A GRANULAR PLANT FOOD TO PRODUCE STRONG, VIGOROUS ROOT SYSTEMS AND STURDY PLANTS

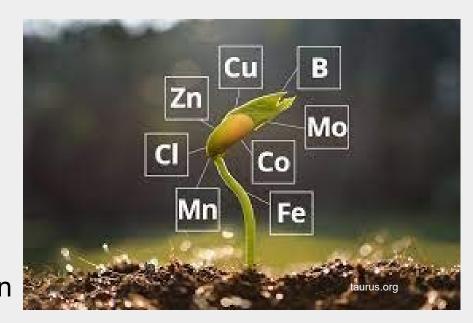
Macronutrients

Nitrogen (N) - Protein structure


Phosphorus (P) - Metabolism & Cell Structure

Potassium (K) - Enzyme Carrier & Regulation

Calcium (Ca) - Root Permeability & Enzyme Activity


Magnesium (Mg) - Chlorophyll & Metabolism

Sulfur (S) - Protein & Cell Component

Micronutrients

Iron (Fe) - chlorophyll function Manganese (Mn) - enzyme activity Copper (Cu) - enzyme function Zinc (Zn) - enzyme regulation Boron (B) - cell growth Molybdenum (Mo) - nitrogen function

Tissue vs. Soil nutrient levels

 Soil tests = what is available

• Tissue tests = what the plant takes up

Best Use of Fertilizer

Right Product

Apply the right nutrients based on what the crop needs to grow.

Ν

Right Rate

Apply the correct

amount of nutrients

that the crop needs

to grow - not too

much, not too little.

P

Right Time

The 4 Rs

A farmer follows 4 R's when applying

nutrients:

Apply nutrients when the crop needs it – as the crop starts to grow and after it is harvested to replenish the soil.

Right Place

Apply nutrients in the right place so more nutrients are used by the crop and soils, and less are lost to the environment.

Graphics courtesy of Agrium Inc

Organic Matter Management

Compost, cover crops, and soil organic matter

Types of Organic Matter

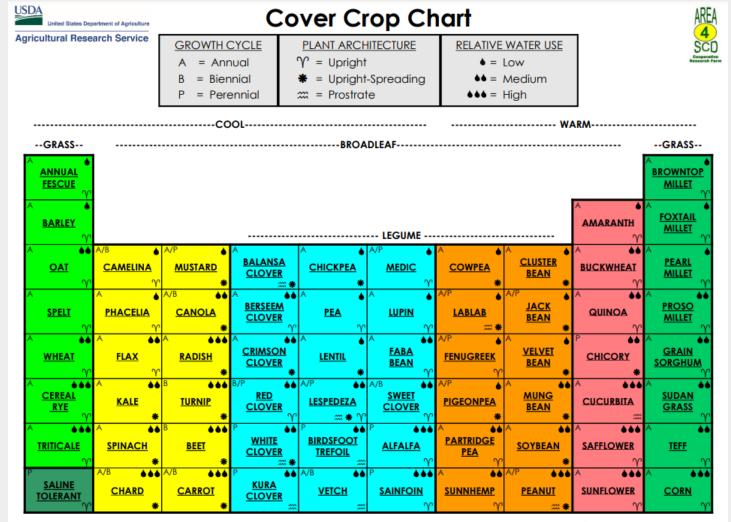
- Cover crops
- Mulches
- Compost
- Animal Manures

What are the Pros and Cons of each type?

Cover Crops

Improved soil infiltration

Crop diversity


Increased organic matter

Supports soil microbial community

Improves water holding capacity

Reduce water and wind erosion

V 3.0 February 2018

Additional Information

54

Mulches

- Two types: plastic and organic
 - 1. Reduces water loss
- 2. Weed control
- 3. Increased organic matter
- 4. Soil temperature regulation
- 5. Reduced rainfall energy impact

Compost

Know the source

- Certifications
- Possible legacy herbicides
- Animal waste, biosolids, food waste
- Pathogens and weeds seeds

carolinacompost.com

Management Methods

Conventional

- No-till and reduced till
- Weed management through herbicides
- Synthetic fertilizers

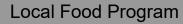
Organic

- Soil disturbance with weeding
- Compost and organic fertilizers
- Focus on building organic

matter

• Cover crops

For more information on Soils:



NCDA&CS Soil Testing Lab https://www.ncagr.gov/agronomi/uyrst.htm

Soils Chapter Extension Gardener Handbook <u>https://content.ces.ncsu.edu/extension-gardener-</u> <u>handbook/1-soils-and-plant-nutrients</u>

List of Resources https://gardening.ces.ncsu.edu/soils/

